
72 The Delphi Magazine Issue 70

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Error Starting Kylix

QI get runtime error 230 when
trying to start Kylix. Do you

know what might cause this?

AThe most likely cause I have
heard is that your JPEG li-

brary has been compiled incor-
rectly. Whilst the library is
apparently the correct version
(since Kylix installed correctly),
one of the values defined in the li-
brary is causing problems with the
JPEG image used in the Kylix
splash screen.

To find out if this is true, try pass-
ing the -ns parameter to the
startkylix script which disables the
splash screen and see if the IDE
starts up OK. Assuming it does, you
can perform a further test by
choosing Help | About to see the
About box. This dialog also has a
JPEG image and, if the JPEG library
is indeed compiled incorrectly,
you could well get JPEG Error #21.

You will need to obtain the JPEG
library source, possibly from your
Linux installation CDs, or from
www.ijg.org. Look in the file
jpeglib.h and locate the symbol
D_MAX_BLOCKS_IN_MCU (the JPEG
decompressor’s limit on blocks
per MCU). If it is being defined as

anything other than 10, change it
back to 10 (it is apparently often
changed to higher values, such
as 64).

Now you can follow the direc-
tions that come with the library
source code to recompile and
install it. This should remedy the
problem.

An alternative solution would be
to install the correctly compiled
library from the Kylix CD. You can
find the RPM file in the CD’s
patches/jpeg6.2.0 directory. Your
current library can be updated by
navigating to the CD directory and
running:

rpm -Uhv
libjpeg-6.2.0-62.i386.rpm

Linux Equivalents
Of Win32 APIs

QCan you tell me what the
equivalents of the following

Win32 APIs are in the Linux
environment? I use these APIs
quite frequently: LoadLibrary,
FreeLibrary, GetProcAddress,
GetComputerName, GetUserName, and
OutputDebugString.

ASounds like you could do
with ordering The Tomes of

Kylix: The Linux API by Glenn A
Stephens, published by Wordware,
which should hopefully be

available by the time you read this.
The book should cover most of the
standard Linux API, showing how
to use it in Kylix programs and I
am certainly looking forward to
reading a copy myself.

Anyway, back to the question.
Some of these Win32 APIs are rea-
sonably easy to translate over to
the equivalent Linux calls. For
example, you can see how to do
the library manipulation by scour-
ing the Kylix source code (Kylix
applications have to load library
files sometimes, after all). In fact,
the Kylix version of SysUtils.pas
obligingly provides us with imple-
mentations of LoadLibrary, Free-
Library and GetProcAddress which
call down to the appropriate Linux
APIs (see Listing 1).

SysUtils also has a few more
translated Win32 APIs up its
sleeve, including GetModuleHandle,
GetModuleName and Sleep as can be
seen in Listing 2.

The other APIs in question
include GetComputerName, GetUser-
Name and OutputDebug String. The
equivalent of GetComputerName
is gethostname (see Listing 3).
GetUserName is a bit trickier,
though.

On Linux, there is a getlogin
routine that returns the user
logged in on the controlling termi-
nal, but this routine is apparently
ill-advised for security-related

➤ Listing 1: Dynamic library
manipulation in Linux.

function LoadLibrary(ModuleName: PChar): HMODULE;
begin
Result := HMODULE(dlopen(ModuleName, RTLD_LAZY));

end;
function FreeLibrary(Module: HMODULE): LongBool;
begin
Result := LongBool(dlclose(Pointer(Module)));

end;
function GetProcAddress(Module: HMODULE; Proc: PChar):
Pointer;

var
Info: TDLInfo;
Error: PChar;
ModHandle: HMODULE;

begin
// dlsym doesn't clear error state when function succeeds
dlerror;
Result := dlsym(Pointer(Module), Proc);
Error := dlerror;
if Error <> nil then

Result := nil
else if dladdr(Result, Info) <> 0 then begin

{ In glibc 2.1.3 and earlier, dladdr returns a nil dli_fname
for addresses in the main program file. In glibc 2.1.91
and later, dladdr fills in the dli_fname for addresses
in the main program file, but dlopen will segfault when
given the main program file name.
Workaround: Check the symbol base address against the
main program file's base address, and only call dlopen
with a nil filename to get the module name of the main
program. }
if Info.dli_fbase = ExeBaseAddress then
Info.dli_fname := nil;

ModHandle := HMODULE(dlopen(Info.dli_fname, RTLD_LAZY));
if ModHandle <> 0 then begin
dlclose(Pointer(ModHandle));
if ModHandle <> Module then
Result := nil;

end;
end else Result := nil;

end;

74 The Delphi Magazine Issue 70

➤ Listing 2: Some more Win32
APIs written for Linux, from
SysUtils.

function GetModuleHandle(ModuleName: PChar): HMODULE;
function CheckModuleName(linkmap: plink_map): Boolean;
var
BaseName: PChar;

begin
Result := True;
if ((ModuleName = nil) and ((linkmap.l_name = nil) or
(linkmap.l_name[0] = #0))) or
((ModuleName[0] = PathDelim) and (StrComp(ModuleName,
linkmap.l_name) = 0)) then begin
Result := False;
Exit;

end else begin
// Locate the start of the actual filename
BaseName := StrRScan(linkmap.l_name, PathDelim);
if BaseName = nil then
BaseName := linkmap.l_name

// The filename is actually located at BaseName+1
else Inc(BaseName);
if StrComp(ModuleName, BaseName) = 0 then begin

Result := False;
Exit;

end;
end;

end;
begin
Result := InitModule(ScanLinkMap(@CheckModuleName));

end;
function GetModuleName(Module: HMODULE): string;
var
ModName: array[0..MAX_PATH] of Char;

begin
SetString(Result, ModName,
GetModuleFileName(Module, ModName, SizeOf(ModName)));

end;
procedure Sleep(milliseconds: Cardinal);
begin
usleep(milliseconds * 1000); // usleep is in microseconds

end;

{$ifdef LINUX}
function GetComputerName(lpBuffer: PChar; var nSize: DWord): Bool;
begin
Result := not Bool(gethostname(lpBuffer, nSize))

end;
{$endif}
function ComputerName: String;
var
Buf: array[0..MAX_COMPUTERNAME_LENGTH] of Char;
BufLen: DWord;

begin
BufLen := SizeOf(Buf);
if not GetComputerName(Buf, BufLen) then
RaiseLastOSError; //Use RaiseLastWin32Error in Delphi 5

Result := Buf
end;

➤ Listing 3: The Linux version of GetComputerName.

purposes; it is too easy for getlogin
to be fooled:

ShowMessage(getlogin());

You could also try getting the value
of the LOGNAME environment vari-
able, but again, that can be
changed by anyone in advance:

ShowMessage(
GetEnvironmentVariable(
‘LOGNAME’));

It is more reliable to use getuid,
which returns the real user id (uid)
of the current process. This value
can then be fed to getpwuid, which
returns a pointer to a record con-
taining information on the uid from
the file /etc/passwd. The record
contains the corresponding user
name for the uid:

ShowMessage(
getpwuid(getuid)^.pw_name);

To find the uid of the effective user,
in other words, the uid that the cur-
rent program is running under the
guise of, you could try cuserid.
However, the online manual page
for it warns us off this call as well:
Nobody knows precisely what
cuserid() does, avoid it in portable
programs, avoid it altogether, use
getpwuid(geteuid()) instead, if that
is what you meant. DO NOT USE
cuserid(). The comments suggest
calling geteuid, which returns the
effective user id of the current pro-
cess (not necessarily the logged in
uid), as shown in Listing 4.

Next on the list is OutputDebug-
String which, in Windows, sends a
message to the debugger (visible in
the Event Log debugger window), if
one is in control of the program. If
no debugger is present, the call
does nothing. Unfortunately, Linux
does not have an equivalent way of
communicating with a debugger,
but it does have a way of recording
messages of interest in the system
message log file (typically
/var/log/messages) via the syslog
API.

The syslog API communicates
with the system logging utility,

adding a line of text to the end of
the system message log for each
call, prefixed with the date, time,
host name and application name.
The declaration of the routine in C
syntax looks like:

void syslog(int priority,
char *format, ...)

where the ellipsis at the end of
the argument list implies the rou-
tine takes a variable number of

{$ifdef LINUX}
function GetUserName(lpBuffer: PChar; var nSize: DWord): Bool;
var
Name: PChar;

begin
Result := False;
Name := getpwuid(geteuid())^.pw_name;
if StrLen(Name) < nSize then begin
StrCopy(lpBuffer, Name);
Result := True

end else
nSize := Succ(StrLen(Name))

end;
{$endif}
function UserName: String;
var
Buf: array[0..256] of Char;
BufLen: DWord;

begin
BufLen := SizeOf(Buf);
if not GetUserName(Buf, BufLen) then
RaiseLastOSError; //Use RaiseLastWin32Error in Delphi 5

Result := Buf
end;

➤ Listing 4: The Linux version of
GetUserName.

June 2001 The Delphi Magazine 75

arguments (much like C’s printf
and sprintf routines).

Historically, Object Pascal has
had no way of writing a corre-
sponding declaration and as such,
calling C routines with variable
numbers of arguments was beyond
the scope of Object Pascal pro-
grammers. However, starting with
Kylix, we can now form the appro-
priate import declaration using a
new directive dedicated to access-
ing these types of external C
routines:

procedure syslog(__pri:
Integer; __fmt: PChar);
cdecl; varargs;

The idea is to pass one or more
constants (combined with the or
operator) as the first parameter.
The second parameter is then a
string which may contain format-
ting characters compatible with
C’s sprintf (which are much the
same as those used by Object
Pascal’s Format function). If format-
ting characters are used, the
values to be used in their place are
passed as additional arguments.

Listing 5 shows three calls being
made to syslog: one with no for-
matting characters, a second with
one, and a third with two. As you
can see, sufficient extra arguments
have been passed to ensure each
formatting string gets a value.
Listing 5 also shows the tail end of
/var/log/messages, which contains
the generated output. Note that
this file is marked as only accessi-
ble by root, so you will need to log
in as rootor become root (using su)
in order to read the file.

Dynamically
Choosing COM Objects

QI am designing an applica-
tion where the main

program needs to talk to a COM
object via an interface, but the
COM object can potentially be im-
plemented in different ways to do
different jobs. The goal is to have
several versions of the same COM
object available on a machine and,
depending on some setting (maybe
in the registry), decide which one
to use at runtime. Do you have any
recommendations about how I
should set about implementing
this architecture?

AI can see two approaches to
this problem, either one of

which should work just fine. Both
approaches involve setting up a
small type library which defines
the interface. Then, for each
possible implementation of the
COM object, you create an ActiveX
Library (as Delphi calls it, but
really I mean an in-process COM
server project).

The first solution involves each
ActiveX Library implementing a
COM object, along with a type
library of its own. The COM object
will be made to implement the
interface defined in the original
type library, by making each new
type library refer to the original
one. Each created COM object will
have a coclass defined in its type
library with a unique ClassID
(coclass identifier), registered
with the system in the normal way.
The calling program can choose
between any of these registered
ClassIDs when it needs to talk to a
COM object.

In a sense, this solution is not an
accurate resolution of the stated
problem. Since each COM object
has a unique ClassID, technically
they are completely different COM
objects, rather than multiple
implementations of the same one.

The second solution also
involves creating a COM object in

an ActiveX Library for each possi-
ble implementation. However, this
time they will not have their own
type libraries and also will not be
registered with the system. Addi-
tionally, each COM class will use
the same ClassId, which will be
known to the calling application. I
feel that this more accurately fits
the problem description.

When the program needs to talk
to one of the COM objects, it will
dynamically load up the ActiveX
Library (which is just a DLL, really)
and manually create the COM
object in the same way that COM
would normally do on your behalf.
When the COM object is finished
with, the ActiveX Library will be
freed.

Let’s look at implementing the
common parts first, then we’ll
follow both solutions in detail. The
first thing needed is a type library
so choose File | New..., then from
the ActiveX page of the dialog
choose Type Library. Save the file
as BaseLib.tlb and set its Help
String attribute on the Type
Library Editor’s Attributespage to
Base Library. Now add a made-up
interface called IFoo, with its
parent interface set to IUnknown
(instead of the default IDispatch)
with a single method called Bar (no
parameters are needed). Figure 1
shows what we should have.

Next, we need some ActiveX
Library projects, which we also
select from the ActiveX page of the
File | New... dialog. On this
month’s disk you can find two such
projects, called ComServer1.dpr
and ComServer2.dpr.

Now we can try out the first solu-
tion, which requires the type
library to be registered with the
system. This can be done with
Delphi’s TRegSvr utility:

tregsvr BaseLib.tlb

In each project we need a
COM object. So, starting with
ComServer1.dpr, select COM Object
from the ActiveX page of the File |
New... dialog and in the wizard
that pops up, give it a class name of
ComClass1. When you press OK, this
COM Server gets its own type
library containing an interface

syslog(LOG_USER or LOG_INFO, 'Hello world');
syslog(LOG_USER or LOG_INFO, 'User %s running the app',
getpwuid(geteuid())^.pw_name);

syslog(LOG_USER or LOG_INFO, 'User %s logged in on host %s',
getpwuid(getuid())^.pw_name, ComputerName);

Apr 22 21:48:23 parallelipiped TestApp: Hello world
Apr 22 21:48:23 parallelipiped TestApp: User blong running the app
Apr 22 21:48:23 parallelipiped TestApp: User blong logged in on host
parallelipiped

➤ Listing 5: Some output in the system message log file.

76 The Delphi Magazine Issue 70

called IComClass1 and a coclass
called ComClass1, set up to imple-
ment IComClass1. The goal is to
remove the default interface from
the type library and change the
coclass to implement IFoo instead.

The way to get a coclass to
implement an interface defined in
another type library was described
in the Type Library Corner Cutting
entry in The Delphi Clinic in Issue
51, November 1999. Having deleted
the interface from the type library,
select the type library node at the
root of the tree in the Type Library
Editor’s object list pane. On the
Usespage on the right you will see a
list of all the type libraries refer-
enced by this one. We need to
add our base type library to this
list, so right-click and choose
Show All Type Libraries and put
a checkmark the Base Library
entry.

Now that this type library knows
about the base type library you can
get the coclass to implement IFoo.
Select the ComClass1 coclass, then
select the Implements page on the
right-hand side of the Type Library
Editor. Now right-click, choose
Insert Interface, and choose IFoo
from the list. A press of the Type
Library Editor’s Refresh button
finishes that side of things, so we
can now go to the source.

One final change is needed in the
source code of the Delphi class

that represents the coclass, cur-
rently sitting in an unsaved unit
(save it as ComClass1Impl.pas).
The TComClass1 class is still set up
on the understanding that it will be
implementing IComClass1, which of
course no longer exists, as well
as IFoo. You should remove
IComClass1 from the list of
implemented interfaces.

In order for the compiler to know
what IFoo is, you should also add
the type library import unit for the
base type library to the uses
clause. This unit was automatically
generated when you saved the
base type library, and was called
BaseLib_TLB.pas. The project
should compile successfully now
with this bare COM class, so all
that is needed is some code in the
TComClass1.Bar method. A side
effect of using a type library to
specify that the COM class
implements IFoo is that this class

already has the IFoo methods
(which amount to a single method
in this case) declared and
implemented with empty meth-
ods. Listing 6 shows the whole
unit.

The first test COM server is com-
plete so it needs to be registered,
either from the command line with
TRegSvr or with the IDE’s Run |
Register ActiveX Server menu
item.

Incidentally, this rigmarole of
setting up a COM class to imple-
ment an interface from a different
type library is much simplified in
Delphi 6 (which may be out by
the time this is printed and will
doubtless borrow this nicety from
C++Builder 5). The COM Object
wizard will have a List button that
shows you a list of all the inter-
faces defined in registered type
libraries, and which you can
choose from (see Figure 2).

You now need to go through this
whole procedure of making a new
COM object, deleting the interface
from the type library, using the
base type library, making the
coclass implement IFoo and fixing
the source code for the other
ActiveX library we generated
earlier.

Both these COM servers had
type libraries manufactured in
them, and both type libraries
will have type library import
units generated for them automati-
cally, called ComServer1_TLB.pas
and ComServer2_TLB.pas respec-
tively. A test project can create

➤ Figure 1: Setting up the base
type library.

unit ComClass1Impl;
interface
uses
Windows, ActiveX, Classes, ComObj, ComServer1_TLB, StdVcl, BaseLib_TLB;

type
TComClass1 = class(TTypedComObject, IFoo)
protected
procedure Bar; safecall;
{Declare IComClass1 methods here}

end;
implementation
uses
ComServ, Dialogs;

procedure TComClass1.Bar;
begin
ShowMessage('Hello from an instance of TComClass1 in ComServer1.dll')

end;
initialization
TTypedComObjectFactory.Create(ComServer, TComClass1, Class_ComClass1,
ciMultiInstance, tmApartment);

end.

➤ Listing 6: The COM class
implementation unit.

78 The Delphi Magazine Issue 70

either COM object by using these
two import units and using the
helper classes defined therein.
Listing 7 shows some code from
the ComClient.dpr test project.
Note that it also uses
BaseLib_TLB.pas for the IFoo
interface type definition.

You can see this project creating
one of the two COM Objects and
calling the Bar method in Figure 3.

CoComClass1 is a small helper
class which is defined in
ComServer1_TLB.pas; it asks COM
to make an instance of the corre-
sponding coclass (ultimately this
will be an instance of TComClass1
inside ComServer1.dll). It gets an
IUnknown interface back and que-
ries it for IFoo support. Assuming

the COM object claims to support
IFoo, an IFoo reference is returned.
The Create method is a class
method rather than a constructor,
so you don’t actually create an
instance of CoComClass1 (which
would require you to destroy it).
You just call one of its methods,
saving you from talking directly to
the COM API when creating an
instance of this type of coclass.

The same is true for CoComClass2
being a helper class representing
TComClass2 defined in the
ComServer2_TLB.pas import unit.

Well, that was the first solution.
Your normal registered COM
approach, but needing to tweak
the automatically generated type
library and COM class implemen-
tation unit, and make each new
COM server reference the base
type library. Now let’s see how the
other solution differs.

Just as before, we start with a
base type library defining the
common interface, IFoo, although
this time the type library need not
be registered. We also start with a
pair of empty ActiveX Library pro-
jects. Notice the four exported rou-
tines from the project source (see
Listing 8). DllRegisterServer and
DllUnregisterServer are exported
to (as their names suggest) facili-
tate registering and unregistering
the COM server. These routines
are called by the Register ActiveX
Server and Unregister ActiveX
Server items on the IDE’s Runmenu,
and also by TRegSvr and Windows’
own RegSvr32 (see OCX Deploy-
ment in The Delphi Clinic in Issue
19, March 1997, for more
information).

The other two routines are
called by COM when a client appli-
cation requests for a COM object
to be created. COM is given the
target ClassID and looks it up in the
registry to find which COM server
contains it. If the server is a DLL,
COM loads it into memory and
calls DllGetClassObject. This rou-
tine takes the ClassID and returns a
reference to the class factory for
the COM object. The class factory
implements the IClassFactory
interface which is returned. COM
then calls the class factory’s
CreateInstance method whose job
is to construct an instance of the
COM class and return it.

➤ Figure 2: Implementing a registered interface in C++Builder 5.

uses
BaseLib_TLB, ComServer1_TLB, ComServer2_TLB;

procedure TForm1.Button1Click(Sender: TObject);
var
Foo: IFoo;

begin
Foo := CoComClass1.Create;
Foo.Bar

end;
procedure TForm1.Button2Click(Sender: TObject);
var
Foo: IFoo;

begin
Foo := CoComClass2.Create;
Foo.Bar

end;

library ComServer1;
uses
ComServ;

exports
DllGetClassObject,
DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;

{$R *.RES}
begin
end.

➤ Listing 7: Create instances of
COM objects implementing
the same interface.

➤ Listing 8: An ActiveX Library
project.

➤ Figure 3:
Creating a COM object.

June 2001 The Delphi Magazine 79

The DllCanUnloadNow routine is
called by COM to check if there are
any COM objects still alive in the
server DLL, before possibly
unloading it.

This second solution will repli-
cate some of this behaviour to
show another way of creating dif-
ferent objects that implement the
same interface. Each COM object
will use the same ClassID, defined
in a common unit. The calling pro-
gram need know only the ClassID
and the name of the DLL in order to
access an object implementing
IFoo.

The first thing we need is a new
unit, which will be shared by both
COM servers and also the calling
program. The only thing to go in
the unit is the common ClassID
shared by both COM objects (see
Listing 9).

Now, in ComServer1.dpr, invoke
the COM Object Wizard again,
through the File | New... dialog.
Set the Instancing value to be
Internal, meaning that it will not be
registered, uncheck the Include
Type Library checkbox and specify
IFoo will be implemented (see
Figure 4).

The resultant unit can be saved
as ComClass1Impl.pas and then we
can make some changes to it.
Firstly, BaseLib_TLB must be added
to the uses clause so the definition
of IFoo can be found. Next, since we
do not have a type library in the
project, we must manually enter
the declaration of the Bar method.

Fortunately, with the declaration
entered, a press of Shift+Ctrl+C
will enter the method body. The
method can be made to produce a
simple message box as before.

Next, you should remove the
ClassID automatically entered by
the wizard, and add CommonUnit to
the uses clause, so our shared
ClassID can be referenced. The
final change is to the class factory
object being created in the initialis-
ation section. The third parameter
is the ClassID to associate with
TComClass1, and so should be
changed from Class_ComClass1 to
SharedClassID. The changed unit
can be seen in Listing 10.

Now repeat
these steps of
making and fixing
the COM object
in ComServer2.dpr
and we can move
onto the calling
program.

To call either
of these COM serv-
ers, the test pro-
gram must again
use BaseLib_TLB.
Much like the previ-
ous test program,
this one has a pair
of buttons. Each

one calls a utility routine, GetIFoo,
to obtain an IFoo interface refer-
ence from a COM object, passing in
the name of the DLL that contains
it. The code for GetIFoo is shown in
Listing 11.

To keep a track of all the loaded
DLLs, GetIFoo maintains a string
list containing the DLL names and
also their handles. This allows
the corresponding TidyUpDllList
routine to safely unload the DLLs
later.

GetIFoo declares a function vari-
able (a typed function pointer)
that is assigned the address of the
DLL’s DllGetClassObject routine, if
found. It is then called to get a ref-
erence to a factory object, whose
CreateInstance method is then
called to get the target COM
Object.

At the end of the program, the
TidyUpDllList routine is called,
and that also declares a function
variable, this time for
DllCanUnloadNow. For each DLL in
the list, the routine is called to
verify there are no COM objects
still being maintained by the COM
server, before unloading the DLL
from memory.

unit CommonUnit;
interface
const
SharedClassID: TGUID = '{1D02060B-0A08-4E8F-A57A-CCAF038445AF}';

implementation
end.

unit ComClass1Impl;
interface
uses
BaseLib_TLB, Windows, ActiveX, Classes, ComObj;

type
TComClass1 = class(TComObject, IFoo)
protected
{Declare IFoo methods here}
procedure Bar; safecall;

end;
//const
// Class_ComClass1: TGUID = '{1D02060B-0A08-4E8F-A57A-CCAF038445AF}';
implementation
uses
ComServ, Dialogs, CommonUnit;

{ TComClass1 }
procedure TComClass1.Bar;
begin
ShowMessage('Hello from a TComClass1 in ComServer1.dll')

end;
initialization
TComObjectFactory.Create(ComServer, TComClass1, SharedClassID,
'ComClass1', '', ciInternal, tmApartment);

end.

➤ Listing 9: The shared ClassID.

➤ Listing 10: The non-registered
COM class.

➤ Figure 4: Setting up a
non-registered COM object.

80 The Delphi Magazine Issue 70

That concludes the second pos-
sible solution to the problem,
which requires absolutely no regis-
tration of COM servers or type
libraries. Both solutions are in the
usual place on this month’s disk,
but each has its own subdirectory,
COMSolution1 or COMSolution2.

Type Library Editor Quirk

QHave you ever seen the Type
Library Editor appending

underscore characters onto the
end of interfaces? This occasion-
ally happens to me when building
COM servers, but I have never
found out what causes it to
happen. Any ideas?

AI know that there is a large
potential for type libraries

which are being imported to use
identifiers which clash with identi-
fiers already defined in Delphi. To
help overcome this problem, the
type library importer uses a text
file called TLIBIMP.SYM. The text file
is formatted like an INI file and con-
tains lists of known type library
identifiers that need to be modified
when encountered.

Full details of how this file is
used can be found in Remapping
Names Defined In Type Libraries, by
Robert West of Borland R&D at

http://community.borland.com/
article/ 0,1410,6328,00.html

Additionally, identifiers that are
encountered in type libraries that
match language reserved words
(such as type, unit and String) are
automatically modified by suf-
fixing them with trailing under-
scores. However, both of these
factors only affect the case when
an existing type library has been
imported with Project | Import
Type Library..., or the TLIBIMP
command-line tool.

The questioner is experiencing
these modified identifiers when
just building a COM server applica-
tion. The only time I have heard of
this problem is when a coclass is
given the same name as the type
library itself (which matches the
project name by default).

When testing this idea, I found it
difficult to see the symptom.
Asking for a COM object with a
coclass name set the same as the
project (and therefore the same as
the default type library name)

results in an error: The project
already contains a form or module
named XXX.

Changing the type library name
beforehand, and asking for a COM
object with the same name gave an
Access Violation and, whilst the
coclass and interface are added to
the type library, the unit contain-
ing the Delphi COM class was not
manufactured.

However, after jigging around
with things for a bit, I managed to
get to see the symptom. The type
library had the coclass and inter-
face with the names I requested,
and the type library import unit
appended an underscore onto any-
thing related to the coclass name.

Acknowledgements
Thanks are due to Martin Curtis
for helping me find the cause
of the type library identifier
modification.

uses
BaseLib_TLB, CommonUnit, ActiveX, ComObj;

var
DllList: TStringList;

function GetIFoo(const DllName: String): IFoo;
var
Idx: Integer;
Dll: THandle;
DllGetClassObject: function (const CLSID, IID: TGUID;
var Obj): HResult; stdcall;

FooFactory: IClassFactory;
begin
//Is DLL already in list?
Idx := DllList.IndexOf(DllName);
//If not, load it and add it
if Idx = -1 then begin
Dll := LoadLibrary(PChar(DllName));
if Dll = 0 then
RaiseLastWin32Error;

DllList.AddObject(DllName, Pointer(Dll));
end else
//else locate it
Dll := THandle(DllList.Objects[Idx]);

//Find the key function
DllGetClassObject :=
GetProcAddress(DLL, 'DllGetClassObject');

if not Assigned(@DllGetClassObject) then
RaiseLastWin32Error;

//Call it to get the class factory
OleCheck(DllGetClassObject(SharedClassID, IClassFactory,
FooFactory));

//Ask the class factory the COM object
if Assigned(FooFactory) then
OleCheck(FooFactory.CreateInstance(nil, IFoo, Result));

end;
procedure TidyUpDllList;
var
I: Integer;
DllCanUnloadNow: function: HResult; stdcall;

begin
for I := 0 to DllList.Count - 1 do begin
DllCanUnloadNow :=
GetProcAddress(THandle(DllList.Objects[0]),
'DllCanUnloadNow');

if Assigned(@DllCanUnloadNow) and
(DllCanUnloadNow = S_OK) then
Freelibrary(THandle(DllList.Objects[0]));

end;
DllList.Free;
DllList := nil

end;

➤ Listing 11: Asking a class
factory to create a COM
object.

	Error Starting Kylix
	Linux Equivalents Of Win32 APIs
	Dynamically Choosing COM Objects
	Type Library Editor Quirk
	Acknowledgements

